A novel p38 mitogen-activated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension.

نویسندگان

  • Monal Patel
  • Dan Predescu
  • Rajive Tandon
  • Cristina Bardita
  • Jennifer Pogoriler
  • Sangeeta Bhorade
  • Minhua Wang
  • Suzy Comhair
  • Anna Ryan Hemnes
  • Jiwang Chen
  • Roberto Machado
  • Aliya Husain
  • Serpil Erzurum
  • Sanda Predescu
چکیده

Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2(MAPK) activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (EC(PAH)), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EH(ITSN)) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EH(ITSN) is mediated via sustained phosphorylation of p38(MAPK) and Elk-1 transcription factor and abolished by chemical inhibition of p38(MAPK). Moreover, lung tissue of PAH animal models and human specimens and EC(PAH) express lower levels of ITSN-1s compared with controls and the GrB-EH(ITSN) cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2(MAPK) activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EH(ITSN)-dependent pathogenic p38(MAPK)/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors.

The transcription factors Elk-1 and SAP-1 bind together with serum response factor to the serum response element present in the c-fos promoter and mediate increased gene expression. The ERK, JNK, and p38 groups of mitogen-activated protein (MAP) kinases phosphorylate and activate Elk-1 in response to a variety of extracellular stimuli. In contrast, SAP-1 is activated by ERK and p38 MAP kinases ...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Cocaethylene affects human microvascular endothelial cell p38 mitogen-activated protein kinase activation and nuclear factor-kappaB DNA-binding activity.

BACKGROUND Cocaethylene (CE) is known to increase the permeability of human microvascular endothelial cell monolayers. The molecular mechanism underlying this increase may involve calcium-modulated signaling pathways such as the p38 mitogen-activated protein kinase (p38 MAPK) and the nuclear factor-kappaB (NF-kappaB) family of transcription factors. The hypothesis of this study was that CE-medi...

متن کامل

Leukotriene B4 Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension.

A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension. LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of this study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely compose...

متن کامل

MAPK superfamily activation in human airway smooth muscle: mitogenesis requires prolonged p42/p44 activation.

Asthma is frequently associated with abnormal airway smooth muscle (ASM) growth that may contribute to airway narrowing and hyperresponsiveness to contractile agents. Although numerous hormones and cytokines have been shown to induce human ASM (HASM) proliferation, the cellular and molecular mechanisms underlying HASM hyperplasia are largely unknown. Here we characterize the roles of the mitoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 36  شماره 

صفحات  -

تاریخ انتشار 2013